| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977 | /** * Default minimum size of a run. */const DEFAULT_MIN_MERGE = 32;/** * Minimum ordered subsequece required to do galloping. */const DEFAULT_MIN_GALLOPING = 7;/** * Default tmp storage length. Can increase depending on the size of the * smallest run to merge. */const DEFAULT_TMP_STORAGE_LENGTH = 256;/** * Pre-computed powers of 10 for efficient lexicographic comparison of * small integers. */const POWERS_OF_TEN = [1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9]/** * Estimate the logarithm base 10 of a small integer. * * @param {number} x - The integer to estimate the logarithm of. * @return {number} - The estimated logarithm of the integer. */function log10(x) {  if (x < 1e5) {    if (x < 1e2) {      return x < 1e1 ? 0 : 1;    }    if (x < 1e4) {      return x < 1e3 ? 2 : 3;    }    return 4;  }  if (x < 1e7) {    return x < 1e6 ? 5 : 6;  }  if (x < 1e9) {    return x < 1e8 ? 7 : 8;  }  return 9;}/** * Default alphabetical comparison of items. * * @param {string|object|number} a - First element to compare. * @param {string|object|number} b - Second element to compare. * @return {number} - A positive number if a.toString() > b.toString(), a * negative number if .toString() < b.toString(), 0 otherwise. */function alphabeticalCompare(a, b) {  if (a === b) {    return 0;  }  if (~~a === a && ~~b === b) {    if (a === 0 || b === 0) {      return a < b ? -1 : 1;    }    if (a < 0 || b < 0) {      if (b >= 0) {        return -1;      }      if (a >= 0) {        return 1;      }      a = -a;      b = -b;    }    const al = log10(a);    const bl = log10(b);    let t = 0;    if (al < bl) {      a *= POWERS_OF_TEN[bl - al - 1];      b /= 10;      t = -1;    } else if (al > bl) {      b *= POWERS_OF_TEN[al - bl - 1];      a /= 10;      t = 1;    }    if (a === b) {      return t;    }    return a < b ? -1 : 1;  }  let aStr = String(a);  let bStr = String(b);  if (aStr === bStr) {    return 0;  }  return aStr < bStr ? -1 : 1;}/** * Compute minimum run length for TimSort * * @param {number} n - The size of the array to sort. */function minRunLength(n) {  let r = 0;  while (n >= DEFAULT_MIN_MERGE) {    r |= (n & 1);    n >>= 1;  }  return n + r;}/** * Counts the length of a monotonically ascending or strictly monotonically * descending sequence (run) starting at array[lo] in the range [lo, hi). If * the run is descending it is made ascending. * * @param {array} array - The array to reverse. * @param {number} lo - First element in the range (inclusive). * @param {number} hi - Last element in the range. * @param {function} compare - Item comparison function. * @return {number} - The length of the run. */function makeAscendingRun(array, lo, hi, compare) {  let runHi = lo + 1;  if (runHi === hi) {    return 1;  }  // Descending  if (compare(array[runHi++], array[lo]) < 0) {    while (runHi < hi && compare(array[runHi], array[runHi - 1]) < 0) {      runHi++;    }    reverseRun(array, lo, runHi);    // Ascending  } else {    while (runHi < hi && compare(array[runHi], array[runHi - 1]) >= 0) {      runHi++;    }  }  return runHi - lo;}/** * Reverse an array in the range [lo, hi). * * @param {array} array - The array to reverse. * @param {number} lo - First element in the range (inclusive). * @param {number} hi - Last element in the range. */function reverseRun(array, lo, hi) {  hi--;  while (lo < hi) {    let t = array[lo];    array[lo++] = array[hi];    array[hi--] = t;  }}/** * Perform the binary sort of the array in the range [lo, hi) where start is * the first element possibly out of order. * * @param {array} array - The array to sort. * @param {number} lo - First element in the range (inclusive). * @param {number} hi - Last element in the range. * @param {number} start - First element possibly out of order. * @param {function} compare - Item comparison function. */function binaryInsertionSort(array, lo, hi, start, compare) {  if (start === lo) {    start++;  }  for (; start < hi; start++) {    let pivot = array[start];    // Ranges of the array where pivot belongs    let left = lo;    let right = start;    /*     *   pivot >= array[i] for i in [lo, left)     *   pivot <  array[i] for i in  in [right, start)     */    while (left < right) {      let mid = (left + right) >>> 1;      if (compare(pivot, array[mid]) < 0) {        right = mid;      } else {        left = mid + 1;      }    }    /*     * Move elements right to make room for the pivot. If there are elements     * equal to pivot, left points to the first slot after them: this is also     * a reason for which TimSort is stable     */    let n = start - left;    // Switch is just an optimization for small arrays    switch (n) {      case 3:        array[left + 3] = array[left + 2];      /* falls through */      case 2:        array[left + 2] = array[left + 1];      /* falls through */      case 1:        array[left + 1] = array[left];        break;      default:        while (n > 0) {          array[left + n] = array[left + n - 1];          n--;        }    }    array[left] = pivot;  }}/** * Find the position at which to insert a value in a sorted range. If the range * contains elements equal to the value the leftmost element index is returned * (for stability). * * @param {number} value - Value to insert. * @param {array} array - The array in which to insert value. * @param {number} start - First element in the range. * @param {number} length - Length of the range. * @param {number} hint - The index at which to begin the search. * @param {function} compare - Item comparison function. * @return {number} - The index where to insert value. */function gallopLeft(value, array, start, length, hint, compare) {  let lastOffset = 0;  let maxOffset = 0;  let offset = 1;  if (compare(value, array[start + hint]) > 0) {    maxOffset = length - hint;    while (offset < maxOffset && compare(value, array[start + hint + offset]) > 0) {      lastOffset = offset;      offset = (offset << 1) + 1;      if (offset <= 0) {        offset = maxOffset;      }    }    if (offset > maxOffset) {      offset = maxOffset;    }    // Make offsets relative to start    lastOffset += hint;    offset += hint;    // value <= array[start + hint]  } else {    maxOffset = hint + 1;    while (offset < maxOffset && compare(value, array[start + hint - offset]) <= 0) {      lastOffset = offset;      offset = (offset << 1) + 1;      if (offset <= 0) {        offset = maxOffset;      }    }    if (offset > maxOffset) {      offset = maxOffset;    }    // Make offsets relative to start    let tmp = lastOffset;    lastOffset = hint - offset;    offset = hint - tmp;  }  /*   * Now array[start+lastOffset] < value <= array[start+offset], so value   * belongs somewhere in the range (start + lastOffset, start + offset]. Do a   * binary search, with invariant array[start + lastOffset - 1] < value <=   * array[start + offset].   */  lastOffset++;  while (lastOffset < offset) {    let m = lastOffset + ((offset - lastOffset) >>> 1);    if (compare(value, array[start + m]) > 0) {      lastOffset = m + 1;    } else {      offset = m;    }  }  return offset;}/** * Find the position at which to insert a value in a sorted range. If the range * contains elements equal to the value the rightmost element index is returned * (for stability). * * @param {number} value - Value to insert. * @param {array} array - The array in which to insert value. * @param {number} start - First element in the range. * @param {number} length - Length of the range. * @param {number} hint - The index at which to begin the search. * @param {function} compare - Item comparison function. * @return {number} - The index where to insert value. */function gallopRight(value, array, start, length, hint, compare) {  let lastOffset = 0;  let maxOffset = 0;  let offset = 1;  if (compare(value, array[start + hint]) < 0) {    maxOffset = hint + 1;    while (offset < maxOffset && compare(value, array[start + hint - offset]) < 0) {      lastOffset = offset;      offset = (offset << 1) + 1;      if (offset <= 0) {        offset = maxOffset;      }    }    if (offset > maxOffset) {      offset = maxOffset;    }    // Make offsets relative to start    let tmp = lastOffset;    lastOffset = hint - offset;    offset = hint - tmp;    // value >= array[start + hint]  } else {    maxOffset = length - hint;    while (offset < maxOffset && compare(value, array[start + hint + offset]) >= 0) {      lastOffset = offset;      offset = (offset << 1) + 1;      if (offset <= 0) {        offset = maxOffset;      }    }    if (offset > maxOffset) {      offset = maxOffset;    }    // Make offsets relative to start    lastOffset += hint;    offset += hint;  }  /*   * Now array[start+lastOffset] < value <= array[start+offset], so value   * belongs somewhere in the range (start + lastOffset, start + offset]. Do a   * binary search, with invariant array[start + lastOffset - 1] < value <=   * array[start + offset].   */  lastOffset++;  while (lastOffset < offset) {    let m = lastOffset + ((offset - lastOffset) >>> 1);    if (compare(value, array[start + m]) < 0) {      offset = m;    } else {      lastOffset = m + 1;    }  }  return offset;}class TimSort {  array = null;  compare = null;  minGallop = DEFAULT_MIN_GALLOPING;  length = 0;  tmpStorageLength = DEFAULT_TMP_STORAGE_LENGTH;  stackLength = 0;  runStart = null;  runLength = null;  stackSize = 0;  constructor(array, compare) {    this.array = array;    this.compare = compare;    this.length = array.length;    if (this.length < 2 * DEFAULT_TMP_STORAGE_LENGTH) {      this.tmpStorageLength = this.length >>> 1;    }    this.tmp = new Array(this.tmpStorageLength);    this.stackLength =      (this.length < 120 ? 5 :        this.length < 1542 ? 10 :          this.length < 119151 ? 19 : 40);    this.runStart = new Array(this.stackLength);    this.runLength = new Array(this.stackLength);  }  /**   * Push a new run on TimSort's stack.   *   * @param {number} runStart - Start index of the run in the original array.   * @param {number} runLength - Length of the run;   */  pushRun(runStart, runLength) {    this.runStart[this.stackSize] = runStart;    this.runLength[this.stackSize] = runLength;    this.stackSize += 1;  }  /**   * Merge runs on TimSort's stack so that the following holds for all i:   * 1) runLength[i - 3] > runLength[i - 2] + runLength[i - 1]   * 2) runLength[i - 2] > runLength[i - 1]   */  mergeRuns() {    while (this.stackSize > 1) {      let n = this.stackSize - 2;      if ((n >= 1 &&        this.runLength[n - 1] <= this.runLength[n] + this.runLength[n + 1]) ||        (n >= 2 &&        this.runLength[n - 2] <= this.runLength[n] + this.runLength[n - 1])) {        if (this.runLength[n - 1] < this.runLength[n + 1]) {          n--;        }      } else if (this.runLength[n] > this.runLength[n + 1]) {        break;      }      this.mergeAt(n);    }  }  /**   * Merge all runs on TimSort's stack until only one remains.   */  forceMergeRuns() {    while (this.stackSize > 1) {      let n = this.stackSize - 2;      if (n > 0 && this.runLength[n - 1] < this.runLength[n + 1]) {        n--;      }      this.mergeAt(n);    }  }  /**   * Merge the runs on the stack at positions i and i+1. Must be always be called   * with i=stackSize-2 or i=stackSize-3 (that is, we merge on top of the stack).   *   * @param {number} i - Index of the run to merge in TimSort's stack.   */  mergeAt(i) {    let compare = this.compare;    let array = this.array;    let start1 = this.runStart[i];    let length1 = this.runLength[i];    let start2 = this.runStart[i + 1];    let length2 = this.runLength[i + 1];    this.runLength[i] = length1 + length2;    if (i === this.stackSize - 3) {      this.runStart[i + 1] = this.runStart[i + 2];      this.runLength[i + 1] = this.runLength[i + 2];    }    this.stackSize--;    /*     * Find where the first element in the second run goes in run1. Previous     * elements in run1 are already in place     */    let k = gallopRight(array[start2], array, start1, length1, 0, compare);    start1 += k;    length1 -= k;    if (length1 === 0) {      return;    }    /*     * Find where the last element in the first run goes in run2. Next elements     * in run2 are already in place     */    length2 = gallopLeft(array[start1 + length1 - 1], array, start2, length2, length2 - 1, compare);    if (length2 === 0) {      return;    }    /*     * Merge remaining runs. A tmp array with length = min(length1, length2) is     * used     */    if (length1 <= length2) {      this.mergeLow(start1, length1, start2, length2);    } else {      this.mergeHigh(start1, length1, start2, length2);    }  }  /**   * Merge two adjacent runs in a stable way. The runs must be such that the   * first element of run1 is bigger than the first element in run2 and the   * last element of run1 is greater than all the elements in run2.   * The method should be called when run1.length <= run2.length as it uses   * TimSort temporary array to store run1. Use mergeHigh if run1.length >   * run2.length.   *   * @param {number} start1 - First element in run1.   * @param {number} length1 - Length of run1.   * @param {number} start2 - First element in run2.   * @param {number} length2 - Length of run2.   */  mergeLow(start1, length1, start2, length2) {    let compare = this.compare;    let array = this.array;    let tmp = this.tmp;    let i = 0;    for (i = 0; i < length1; i++) {      tmp[i] = array[start1 + i];    }    let cursor1 = 0;    let cursor2 = start2;    let dest = start1;    array[dest++] = array[cursor2++];    if (--length2 === 0) {      for (i = 0; i < length1; i++) {        array[dest + i] = tmp[cursor1 + i];      }      return;    }    if (length1 === 1) {      for (i = 0; i < length2; i++) {        array[dest + i] = array[cursor2 + i];      }      array[dest + length2] = tmp[cursor1];      return;    }    let minGallop = this.minGallop;    while (true) {      let count1 = 0;      let count2 = 0;      let exit = false;      do {        if (compare(array[cursor2], tmp[cursor1]) < 0) {          array[dest++] = array[cursor2++];          count2++;          count1 = 0;          if (--length2 === 0) {            exit = true;            break;          }        } else {          array[dest++] = tmp[cursor1++];          count1++;          count2 = 0;          if (--length1 === 1) {            exit = true;            break;          }        }      } while ((count1 | count2) < minGallop);      if (exit) {        break;      }      do {        count1 = gallopRight(array[cursor2], tmp, cursor1, length1, 0, compare);        if (count1 !== 0) {          for (i = 0; i < count1; i++) {            array[dest + i] = tmp[cursor1 + i];          }          dest += count1;          cursor1 += count1;          length1 -= count1;          if (length1 <= 1) {            exit = true;            break;          }        }        array[dest++] = array[cursor2++];        if (--length2 === 0) {          exit = true;          break;        }        count2 = gallopLeft(tmp[cursor1], array, cursor2, length2, 0, compare);        if (count2 !== 0) {          for (i = 0; i < count2; i++) {            array[dest + i] = array[cursor2 + i];          }          dest += count2;          cursor2 += count2;          length2 -= count2;          if (length2 === 0) {            exit = true;            break;          }        }        array[dest++] = tmp[cursor1++];        if (--length1 === 1) {          exit = true;          break;        }        minGallop--;      } while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);      if (exit) {        break;      }      if (minGallop < 0) {        minGallop = 0;      }      minGallop += 2;    }    this.minGallop = minGallop;    if (minGallop < 1) {      this.minGallop = 1;    }    if (length1 === 1) {      for (i = 0; i < length2; i++) {        array[dest + i] = array[cursor2 + i];      }      array[dest + length2] = tmp[cursor1];    } else if (length1 === 0) {      throw new Error('mergeLow preconditions were not respected');    } else {      for (i = 0; i < length1; i++) {        array[dest + i] = tmp[cursor1 + i];      }    }  }  /**   * Merge two adjacent runs in a stable way. The runs must be such that the   * first element of run1 is bigger than the first element in run2 and the   * last element of run1 is greater than all the elements in run2.   * The method should be called when run1.length > run2.length as it uses   * TimSort temporary array to store run2. Use mergeLow if run1.length <=   * run2.length.   *   * @param {number} start1 - First element in run1.   * @param {number} length1 - Length of run1.   * @param {number} start2 - First element in run2.   * @param {number} length2 - Length of run2.   */  mergeHigh(start1, length1, start2, length2) {    let compare = this.compare;    let array = this.array;    let tmp = this.tmp;    let i = 0;    for (i = 0; i < length2; i++) {      tmp[i] = array[start2 + i];    }    let cursor1 = start1 + length1 - 1;    let cursor2 = length2 - 1;    let dest = start2 + length2 - 1;    let customCursor = 0;    let customDest = 0;    array[dest--] = array[cursor1--];    if (--length1 === 0) {      customCursor = dest - (length2 - 1);      for (i = 0; i < length2; i++) {        array[customCursor + i] = tmp[i];      }      return;    }    if (length2 === 1) {      dest -= length1;      cursor1 -= length1;      customDest = dest + 1;      customCursor = cursor1 + 1;      for (i = length1 - 1; i >= 0; i--) {        array[customDest + i] = array[customCursor + i];      }      array[dest] = tmp[cursor2];      return;    }    let minGallop = this.minGallop;    while (true) {      let count1 = 0;      let count2 = 0;      let exit = false;      do {        if (compare(tmp[cursor2], array[cursor1]) < 0) {          array[dest--] = array[cursor1--];          count1++;          count2 = 0;          if (--length1 === 0) {            exit = true;            break;          }        } else {          array[dest--] = tmp[cursor2--];          count2++;          count1 = 0;          if (--length2 === 1) {            exit = true;            break;          }        }      } while ((count1 | count2) < minGallop);      if (exit) {        break;      }      do {        count1 = length1 - gallopRight(tmp[cursor2], array, start1, length1, length1 - 1, compare);        if (count1 !== 0) {          dest -= count1;          cursor1 -= count1;          length1 -= count1;          customDest = dest + 1;          customCursor = cursor1 + 1;          for (i = count1 - 1; i >= 0; i--) {            array[customDest + i] = array[customCursor + i];          }          if (length1 === 0) {            exit = true;            break;          }        }        array[dest--] = tmp[cursor2--];        if (--length2 === 1) {          exit = true;          break;        }        count2 = length2 - gallopLeft(array[cursor1], tmp, 0, length2, length2 - 1, compare);        if (count2 !== 0) {          dest -= count2;          cursor2 -= count2;          length2 -= count2;          customDest = dest + 1;          customCursor = cursor2 + 1;          for (i = 0; i < count2; i++) {            array[customDest + i] = tmp[customCursor + i];          }          if (length2 <= 1) {            exit = true;            break;          }        }        array[dest--] = array[cursor1--];        if (--length1 === 0) {          exit = true;          break;        }        minGallop--;      } while (count1 >= DEFAULT_MIN_GALLOPING || count2 >= DEFAULT_MIN_GALLOPING);      if (exit) {        break;      }      if (minGallop < 0) {        minGallop = 0;      }      minGallop += 2;    }    this.minGallop = minGallop;    if (minGallop < 1) {      this.minGallop = 1;    }    if (length2 === 1) {      dest -= length1;      cursor1 -= length1;      customDest = dest + 1;      customCursor = cursor1 + 1;      for (i = length1 - 1; i >= 0; i--) {        array[customDest + i] = array[customCursor + i];      }      array[dest] = tmp[cursor2];    } else if (length2 === 0) {      throw new Error('mergeHigh preconditions were not respected');    } else {      customCursor = dest - (length2 - 1);      for (i = 0; i < length2; i++) {        array[customCursor + i] = tmp[i];      }    }  }}/** * Sort an array in the range [lo, hi) using TimSort. * * @param {array} array - The array to sort. * @param {function=} compare - Item comparison function. Default is *     alphabetical * @param {number} lo - First element in the range (inclusive). * @param {number} hi - Last element in the range. *     comparator. */export function sort(array, compare, lo, hi) {  if (!Array.isArray(array)) {    throw new TypeError('Can only sort arrays');  }  /*   * Handle the case where a comparison function is not provided. We do   * lexicographic sorting   */  if (!compare) {    compare = alphabeticalCompare;  } else if (typeof compare !== 'function') {    hi = lo;    lo = compare;    compare = alphabeticalCompare;  }  if (!lo) {    lo = 0;  }  if (!hi) {    hi = array.length;  }  let remaining = hi - lo;  // The array is already sorted  if (remaining < 2) {    return;  }  let runLength = 0;  // On small arrays binary sort can be used directly  if (remaining < DEFAULT_MIN_MERGE) {    runLength = makeAscendingRun(array, lo, hi, compare);    binaryInsertionSort(array, lo, hi, lo + runLength, compare);    return;  }  let ts = new TimSort(array, compare);  let minRun = minRunLength(remaining);  do {    runLength = makeAscendingRun(array, lo, hi, compare);    if (runLength < minRun) {      let force = remaining;      if (force > minRun) {        force = minRun;      }      binaryInsertionSort(array, lo, lo + force, lo + runLength, compare);      runLength = force;    }    // Push new run and merge if necessary    ts.pushRun(lo, runLength);    ts.mergeRuns();    // Go find next run    remaining -= runLength;    lo += runLength;  } while (remaining !== 0);  // Force merging of remaining runs  ts.forceMergeRuns();}
 |